Telomere Science Library

Publications, Presentations, and Videos
about the Nobel-Prize Winning Science of Telomere Biology

Cell-Free Fetal DNA, Telomeres, and the Spontaneous Onset of Parturition.

Authors: Mark M. Phillippe
Published: 06/30/2015, Reproductive sciences (Thousand Oaks, Calif.)

Abstract

Multiple previous reports have provided compelling support for the premise that spontaneous parturition is mediated by activation of inflammation-related signaling pathways leading to increased secretion of cytokines and chemokines, the influx of neutrophils and macrophages into the pregnant uterus, increased production of uterine activation proteins (eg, connexin-43, cyclo-oxygenase-2, oxytocin receptors, etc), activation of matrix metalloproteinases, and the release of uterotonins leading to cervical ripening, membrane rupture, and myometrial contractions. The missing link has been the fetal/placental signal that triggers these proinflammatory events in the absence of microbial invasion and intrauterine infection. This article reviews the biomedical literature regarding the increase in cell-free fetal DNA (cffDNA), which is released during apoptosis in the placenta and fetal membranes at term, the ability of apoptosis modified vertebrate DNA to stimulate toll-like receptor-9 (TLR9) leading to increased release of cytokines and chemokines, and the potential "fail-safe" role for the anti-inflammatory cytokine IL-10. This article also reviews the literature supporting the key role that telomere loss plays in regard to increasing the ability of vertebrate (including placental) DNA to stimulate TLR9, and in regard to signaling the onset of apoptosis in the placenta and fetal membranes, thereby providing a biologic clock that determines the length of gestation and the timing for the onset of parturition. In summary, this literature review provides a strong rationale for future research to test the hypothesis that telomere loss and increased cffDNA levels trigger the proinflammatory events leading to the spontaneous onset of parturition in mammals: the "cffDNA/telomere hypothesis."

© The Author(s) 2015.
PubMed Full Text