Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome.
Authors: Simona S. Colla, Derrick Sek Tong DS. Ong, Yamini Y. Ogoti, Matteo M. Marchesini, Nipun A NA. Mistry, Karen K. Clise-Dwyer, Sonny A SA. Ang, Paola P. Storti, Andrea A. Viale, Nicola N. Giuliani, Kathryn K. Ruisaard, Irene I. Ganan Gomez, Christopher A CA. Bristow, Marcos M. Estecio, David C DC. Weksberg, Yan Wing YW. Ho, Baoli B. Hu, Giannicola G. Genovese, Piergiorgio P. Pettazzoni, Asha S AS. Multani, Shan S. Jiang, Sujun S. Hua, Michael C MC. Ryan, Alessandro A. Carugo, Luigi L. Nezi, Yue Y. Wei, Hui H. Yang, Marianna M. D'Anca, Li L. Zhang, Sarah S. Gaddis, Ting T. Gong, James W JW. Horner, Timothy P TP. Heffernan, Philip P. Jones, Laurence J N LJ. Cooper, Han H. Liang, Hagop H. Kantarjian, Y Alan YA. Wang, Lynda L. Chin, Carlos C. Bueso-Ramos, Guillermo G. Garcia-Manero, Ronald A RA. DePinho
Published:
05/13/2015,
Cancer cell
Abstract
Myelodysplastic syndrome (MDS) risk correlates with advancing age, therapy-induced DNA damage, and/or shorter telomeres, but whether telomere erosion directly induces MDS is unknown. Here, we provide the genetic evidence that telomere dysfunction-induced DNA damage drives classical MDS phenotypes and alters common myeloid progenitor (CMP) differentiation by repressing the expression of mRNA splicing/processing genes, including SRSF2. RNA-seq analyses of telomere dysfunctional CMP identified aberrantly spliced transcripts linked to pathways relevant to MDS pathogenesis such as genome stability, DNA repair, chromatin remodeling, and histone modification, which are also enriched in mouse CMP haploinsufficient for SRSF2 and in CD34(+) CMML patient cells harboring SRSF2 mutation. Together, our studies establish an intimate link across telomere biology, aberrant RNA splicing, and myeloid progenitor differentiation.
Copyright © 2015 Elsevier Inc. All rights reserved.
PubMed
Full Text