Background: Physical inactivity is an important risk factor for many aging-related diseases. Leukocyte telomere dynamics (telomere length and age-dependent attrition rate) are ostensibly a biological indicator of human aging. We therefore tested the hypothesis that physical activity level in leisure time (over the past 12 months) is associated with leukocyte telomere length (LTL) in normal healthy volunteers.
Results: Leukocyte telomere length was positively associated with increasing physical activity level in leisure time (P_.001); this association remained significant after adjustment for age, sex, body mass index, smoking, socioeconomic status, and physical activity at work. The LTLs of the most active subjects were 200 nucleotides longer than those of the least active subjects (7.1 and 6.9 kilobases, respectively; P=.006). This finding was confirmed in a small group of twin pairs discordant for physical activity level (on average, the LTL of more active twins was 88 nucleotides longer than that of less active twins; P=.03).
Conclusions: A sedentary lifestyle (in addition to smoking, high body mass index, and low socioeconomic status) has an effect on LTL and may accelerate the aging process. This provides a powerful message that could be used by clinicians to promote the potentially antiaging effect of regular exercise.