Poor sleep quality and short sleep duration are associated with increased incidence and progression of a number of chronic health conditions observed at greater frequency among the obese and those experiencing high levels of stress. Accelerated cellular aging, as indexed by telomere attrition in immune cells, is a plausible pathway linking sleep and disease risk. Prior studies linking sleep and telomere length are mixed. One factor may be reliance on leukocytes, which are composed of varied immune cell types, as the sole measure of telomere length. To better clarify these associations, we investigated the relationships of global sleep quality, measured by the Pittsburgh Sleep Quality Index (PSQI), and diary-reported sleep duration with telomere length in different immune cell subsets, including granulocytes, peripheral blood mononuclear cells (PBMCs), CD8+ and CD4+ T lymphocytes, and B lymphocytes in a sample of 87 obese men and women (BMI mean=35.4, SD=3.6; 81.6% women; 62.8% Caucasian). Multiple linear regression analyses were performed adjusting for age, gender, race, education, BMI, sleep apnea risk, and perceived stress. Poorer PSQI global sleep quality was associated with statistically significantly shorter telomere length in lymphocytes but not granulocytes and in particular CD8+ T cells (b=-56.8 base pairs per one point increase in PSQI, SE=20.4, p=0.007) and CD4+ T cells (b=-37.2, SE=15.9, p=0.022). Among separate aspects of global sleep quality, low perceived sleep quality and decrements in daytime function were most related to shorter telomeres. In addition, perceived stress moderated the sleep-CD8+ telomere association. Poorer global sleep quality predicted shorter telomere length in CD8+ T cells among those with high perceived stress but not in low stress participants. These findings provide preliminary evidence that poorer global sleep quality is related to telomere length in several immune cell types, which may serve as a pathway linking sleep and disease risk in obese individuals.